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Large-Order Strong Coupling Perturbation
Coefficients for Anharmonic Oscillators

J. Zamastil,1,2 L. Skála,1,2,3 and J. Čı́žek1,2
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A large-order formula for the perturbation coefficients of the strong-coupling
perturbation expansion for anharmonic oscillators with Hamiltonian H 5 p2 1
x2 1 bx2m is derived and parameters in this formula are determined for the ground
and first excited states of the quartic, sextic, octic, and decadic oscillators (m 5
2, 3, 4, 5).

1. INTRODUCTION

In this paper, we investigate the Schrödinger equation

Hc 5 E(b)c (1)

for the anharmonic oscillators, where

H 5 2d 2/dx2 1 x2 1 bx2m, b $ 0, m $ 2 (2)

The energy E(b) can be expressed as the strong-coupling expansion (see,
e.g., ref. 1)

E(b) 5 b1/(m11) o
`

n50
Knb22n/(m11) (3)

The series (3) converges if b is sufficiently large, i.e., if b . bmin, where
bmin . 0. The large-order behavior of the Kn coefficients was investigated
in ref. 2, where the large-order formula for the Kn coefficients

1 Faculty of Mathematics and Physics, Charles University, 12116 Prague, 2, Czech Republic.
2 Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1,
Canada.

3 To whom correspondence should be addressed at Faculty of Mathematics and Physics, Charles
University, Ke Karlovu 3, 12116 Prague 2, Czech Republic; e-mail: skala@quantum.
karlov.mff.cuni.cz

2415
0020-7748/00/1000-2415$18.00/0 q 2000 Plenum Publishing Corporation



2416 Zamastil, Skála, and Čı́žek

Kn 5 A
cos(nw 1 d)

.zK.nn3/2 (4)

where w 5 arg zK , was derived. Here, A and d are constants, zK denotes the
complex square root branch point of the energy e(z) with the smallest distance
to the origin [1, 3–5],

e(z) 5 b21/(m11)E(b) 5 o
`

n50
Knzn (5)

z 5 b22/(m11), and K 5 0, 1, . . . is the index of the excitation. The minimal
value of b for which the series (3) converges can be computed from the
equation [6, 7]

bmin 5
1

.zK.(m11)/2 (6)

The values of zK for the ground and first excited states of the quartic, sextic,
octic, and decadic oscillators (m 5 2, 3, 4, 5) can be found in refs. 6 and 7.
Since the derivation of Eq. (4) in ref. 2 is very brief and there are typos in
the expressions for the constants A and d found in there, we give independent
derivation of this equation here. Further, we compute the numerical values
of the constants A and d for the ground and first excited states of the quartic,
sextic, octic, and decadic oscillators and perform numerical tests of Eq. (4).

2. LARGE-ORDER FORMULA

In agreement with refs. 1, 3–5, and 8, the energy e(z) has the following
analytic structure. Because of the symmetry e(z) 5 [e(z*)]*, where the asterisk
denotes complex conjugation, we restrict our discussion to the upper half-
plane arg z P (0, p). The energy e(z) is analytic in the region arg z , 2p/
3. For arg z . 2p/3 and .z. $ .z0., the energy e(z) has square-root branch
points. At these points, two neighboring states of the same parity have the
same (degenerate) complex energy e(z). For example, at the branch point
z0 5 z2 with the smallest distance to the origin the ground and second excited
states have the same complex energy e(z0) 5 e(z2). Going to larger values
of .z., another branch point z1 5 z3 where the first and third excited states
have the same degenerate energy exists. Continuing, we find two branch points
where the energies of the second and fourth excited states are degenerate, three
branch points where the energies of the fourth and sixth excited states are
degenerate, etc. An analogous picture is obtained for the odd-parity states.
For K . 3, the absolute value of the branch point zK , which has the smallest
distance to the origin of all the branch points corresponding to the degenerate
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energies of the (K 2 2)th and Kth states, determines the radius of convergence
of the series (3) for the Kth state. The absolute value of zK increases with
increasing K. We note that the absolute values of the branch points belonging
to the degenerate energies of the (K 2 2)th and Kth states are similar, so
that these points lie approximately on a part of the circle with the center in
the origin.

To derive Eq. (4) we consider the ground and second excited states.
Discussion for the first and third excited states is analogous. It follows from
the analytic structure of the energy e(z) that to calculate Kn we can use the
Cauchy formula with the integration path C shown in Fig. 1:

Kn 5
1

2pi RC
dz

e(z)
zn11 (7)

Fig. 1. The integration path C in the complex z-plane. The dots denote z0 and z*0 .
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Using the square-root character of the branch points, we can write for z close
to z0

e(z) 5 e(z0) 1 c(z 2 z0)1/2 1 ??? (8)

where c is a complex constant. Neglecting the integrals along the circle-like
parts of the contour C and assuming large n, we can extend the lower bound
of the integration to z0 2 ` and get

Kn 5
1

2pi #
z0

z02`

dz
De(z)
zn11 1 c.c. (9)

where De(z) 5 2i(z0 2 z)1/2c for the ground state and De(z) 5 22i(z0 2 z)1/

2c for the second excited state. Further, introducing the variable t 5 (z0 2
z)/.z0., where z0 5 .z0.eiargz0, we get

Kn 5
6c.z0.3/2

pzn11
0

#
`

0

dt
t1/2

(1 2 t e2iargz0)n11 1 c.c. (10)

Here, the plus sign is valid for the ground state and the minus sign for the
second excited state. The last integral can be written in the form

I 5 #
`

0

dt t1/2 e2(n11)ln(11texpiu) (11)

where

u 5 p 2 arg z0 (12)

For large n, the dominant contribution to this integral is given by t → 0.
Therefore, we can replace ln(1 1 t exp iu) by t exp iu, which leads to

I 5
!p
2

e2i3u/2 1
n3/2 (13)

Inserting this result into Eq. (10), we get after some manipulation the final
result

Kn 5 6!1
p

.c.?.z0.1/2 1
.z0.nn3/2

3 cosFn arg z0 1
3p 2 arg z0

2
2 argcG (14)

Comparing this equation with Eq. (4), we see that
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A 5 6!1
p

.c.?.z0.1/2 (15)

and

d 5 (3p 2 arg z0)/2 2 arg c (16)

Our Eq. (14) differs from the formula given in ref. 2 in the values of A and
d. We note also that the form of Eq. (14) agrees with the form of Eq. (19)
in ref. 6,

Kn 5
1

.z0.n21n3/2 [e1 cos(nw) 1 f1 sin(nw)] (17)

where the large-order behavior of the coefficients Kn was investigated by
another method. Comparing the first two terms of Eq. (7) in ref. 6

e(z) 5 e(z0) 1 c1[(z 2 z0)(z 2 z*0 )]1/2 1 ??? (18)

with Eq. (8), we get for z in the neighborhood of z0

c 5 c1(z0 2 z*0 )1/2 (19)

3. NUMERICAL RESULTS

The numerical values of the coefficients Kn , the branch points zK , and
the constants c1 and bmin for the ground and first excited states of the quartic,
sextic, octic, and decadic oscillators can be found in refs. 6 and 7. Using the
values of zK and c1 given in these papers, we calculated the constants A and
d from Eqs. (15), (16), and (19) (see Tables I and II). It follows from Eq.
(20) of ref. 6,

Table I. Constants A and d and Value of the Branch Point z0 in Eq. (4) Describing the
Large-Order Behavior of Coefficients Kn for the Ground State (K 5 0) of the Quartic,

Sextic, Octic, and Decadic Oscillators (m 5 2, 3, 4, 5)a

m A d z0

2 2.17 5.73 24.193 1 2.169i
3 2.94 5.82 26.438 1 5.011i
4 3.41 5.87 28.099 1 7.545i
5 3.67 5.89 29.445 1 9.702i

a The values of z0 were taken from ref. 6.
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Table II. Constants A and d and Value of the Branch Point z1 in Eq. (4) Describing the
Large-Order Behavior of Coefficients Kn for the First Excited State (K 5 1) of the

Quartic, Sexic, Octic, and Decadic Oscillators (m 5 2, 3, 4, 5)a

m A d z1

2 3.22 5.83 24.987 1 4.023i
3 4.48 5.97 27.029 1 10.02i
4 5.04 6.04 27.863 1 15.46i
5 5.86 6.08 28.255 1 20.05i

a The values of z1 were taken from ref. 7.

Kn 5
1

[z0.n21 n3/2 F1e1 1
e2

n
1

e3

n2 1 ???2 cos(nw)

1 1f1 1
f2

n
1

f3

n2 1 ???2 sin (nw)G (20)

that the accuracy of Eq. (4) is O(1/n).

Fig. 2. Comparison of the large-order formula (14) with the numerical values of the Kn

coefficients for the ground state of the quartic oscillator. The dashed line shows cos[n arg z0 1
(3p 2 arg z0)/2 2 arg c] from Eq. (14) and the full line shows Kn /[!(1/p).c.?
.z0.1/2(1/.z0.nn3/2)], where Kn are the numerical values of the coefficients, n 5 0, . . . , 30.
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Comparison of the numerical values of the Kn coefficients with Eq. (14)
for the ground state of the quartic oscillator is done in Figs. 2 and 3. It is
seen that Eq. (14) is qualitatively applicable already for n about 10. For larger
n, Eq. (14) describes the behavior of the numerical coefficients Kn very well.
The results for other oscillators (m 5 3, . . . , 5) and the first excited state
(K 5 1) are similar.

We tried to apply Eq. (4) also to the higher excited states. However, for
K . 3 and n less than 100 the formula (4) cannot be used. The problem is
apparently in the fact that the number of the branch points increases with
increasing K and the absolute values of these points are very close [see the
discussion above Eq. (7)]. To suppress the contribution of the other branch
points it would be necessary to consider n much larger than 100 or to
generalize Eq. (4) to a larger number of the branch points.

4. CONCLUSIONS

Concluding, we derived the expressions (15) and (16) for A and d,
calculated the values of these constants for the ground and first excited states

Fig. 3. Comparison of the large-order formula (14) with the numerical values of the Kn

coefficients for the ground state of the quartic oscillator. The dashed line shows cos[n arg z0 1
(3p 2 arg z0)/2 2 arg c] from Eq. (14) and the full line shows Kn /[!(1/p).c.?
.z0.1/2(1/.z0.nn3/2)], where Kn are the numerical values of the coefficients, n 5 30, . . . , 100.
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of the quartic, sextic, octic, and decadic oscillators, and showed that the large-
order formula (14) describes well the behavior of the numerical coefficients Kn

starting from low values of n. Equation (14) cannot be used for the excited
states with K . 3 and n about 100. For these cases, further generalization
of this equation is necessary.
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